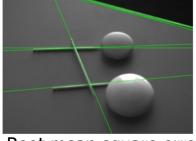

## Vote Address Selection and Timely Initialization for High Frame Rate and Ultra-low Delay Hough Transform

董紫薇 池永研究室 修士課程修了




## Experiments

| Item                               | Straight-line detection core |  |
|------------------------------------|------------------------------|--|
| # LUT                              | 22561 (11.07%)               |  |
| # LUTRAM                           | 157 (0.25%)                  |  |
| # Flip Flop                        | 28137 (6.90%)                |  |
| # BRAM                             | 94 (21.12%)                  |  |
| # IO                               | 311 (62.20%)                 |  |
| # of cycle                         | 693                          |  |
| Input frequency                    | 100 MHz                      |  |
| Processing delay (640 × 480 frame) | 0.7749 ms/frame              |  |

# of cycle: the number of clock cycles the detection core needs to finish processing the parallel 4 pixels.

FPGA: Xilinx Kintex-7 XC7K325T





Root mean square error for accuracy measure

| <b>Method Name</b>          | Error $\theta$ (rad) | Error $\rho$ (pixel) |
|-----------------------------|----------------------|----------------------|
| Standard HT                 | 0.0057               | 2.13                 |
| Chern et al. ICPADS 2005    | 0.0057               | 2.08                 |
| Chen et al. VLSI 2011       | 0.0058               | 2.35                 |
| Northcote et al. ISCAS 2018 | 0.0119               | 2.01                 |
| Ours                        | 0.0057               | 2.15                 |

## Conclusion

The evaluation result shows that the proposals achieve as accurate detection (Root Mean Square Error (RMSE) of  $\theta$  on 0.0057, and RMSE of  $\rho$  on 2.15) as standard Hough transform (RMSE of  $\theta$  on 0.0057, and RMSE of  $\rho$  on 2.13). The designed straightline detection core processes VGA (640 × 480) videos at 0.7749 ms/frame delay on the frequency of 100 MHz.

